The Importance of Apiculture

Albert J. Robertson
Meadow Ridge Enterprises
Outline

- Definition of apiculture
- Importance of honey bees and apiculture practices
- Honey bee health issues
- The Saskatraz project
Apiculture

- Apiculture is the management and study of domesticated honey bees (Apis Mellifera).
 - A critically important profession for secure and sustain the world’s food supply.
Importance of Honey bees and Apicultural Practices

- Responsible for 1/3 of the world’s food supply by pollination of more than 90-100 species of flowering plants (Greenleaf and Kremer, 2006, PNAS, 103: 13890)

- Worldwide economic value to food production of 50-100 billion USD annually with little or no “carbon footprint” (Dr. Phippes, Apitrack website)

- Indicators of the health of their surrounding ecosystem. Essential for the preservation and sustainability of wild species of flowering plants.

- Used for prospecting and detecting land mines.
The Importance of Apiculture, ABIC 2010

Apicultural Practices

- Involved with collection of valuable hive products.
- Honey
 - most “green” sweetener; more evidence of health benefits accumulating (Dr. Ron Fessenden, www.foodnavigator-usa.com) diabetes, weight loss, cognitive function, wound healing, chemotherapy induced neutropenia, cough suppression, antioxidant source.
- Wax
 - Long chain aliphatic alcohol (30-32 C)
- Pollen, propolis, royal jelly, bee venom (apitherapy)
In the media since 2007, Colony Collapse Disorder (CCD). Increased and continued decline in honey bee populations throughout the world is of serious concern.

Possible Causes:

- Parasitic mites (Varroa Destructor)
 - Apis cerana → Apis mellifera
 - Pathogens (viruses and microsporidia) associated with the mites
- Synthetic chemical miticide treatments
 - Residues, mite resistance, decreased natural immunity and suppression of the development of natural resistance to mites
- Lack of genetic diversity in the managed bee population.
- Compounded by poor apicultural practices and agricultural pesticide uses (nicotinoids)
Varroa Mites in Pupae
Scanning Electron Micrographs of Varroa Mite
The Saskatraz Project
SBA Honey Bee Breeding Program

- Established in 2004 in collaboration with Saskatchewan and Manitoba queen breeders.
- Involved assembling a large diverse gene pool at an isolated apiary called Saskatraz.
- Aimed at using natural selection (no synthetic chemical miticides) to select for honey bee genotypes with tolerance to parasitic mites.
The Saskatraz Project

Objective: To develop productive, gentle honeybees with tolerance to mites and brood diseases

By: Albert J. Robertson

SBA Honeybee Breeding Program

Summer 2004-05
Letters A to G represent isolated apiaries and the year of establishment at Meadow Ridge. Solid arrows indicate genetically diverse gene (GD) flow into Saskatraz, dashed arrows gene flow out of Saskatraz. (ii) denotes instrumental insemination. RC denotes recurrent selection. ¹Denotes no chemical miticides.
Saskatraz natural selection yard site fall 2006 – fenced. Selection for this Saskatraz yard site is a death sentence.
Primary Selection Criteria:

1. Honey Production
2. Wintering Ability
3. Mite Resistance and Suppression
4. Resistance to Brood Diseases (chalk brood, foul brood and virus susceptibility)

Breeding methods used to select and enrich for important traits (natural selection, back crossing, recurrent selection and progeny analyses).
September 2006

These bees look good, but they are dying.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT 01</td>
<td>DWV</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>IAPV</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>KBV</td>
<td>-</td>
</tr>
<tr>
<td>SAT 24</td>
<td>DWV</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IAPV</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>KBV</td>
<td>-</td>
</tr>
<tr>
<td>SAT 28</td>
<td>DWV</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IAPV</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>KBV</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SAT 30</td>
<td>DWV</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IAPV</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>KBV</td>
<td>-</td>
</tr>
<tr>
<td>SAT 34</td>
<td>DWV</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>IAPV</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>KBV</td>
<td>-</td>
</tr>
<tr>
<td>Saskatraz Apiary</td>
<td>%T</td>
<td>0.33</td>
<td>0.64</td>
<td>1.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.72</td>
<td>0.9</td>
<td>0.75</td>
<td>0.9</td>
<td>0.75</td>
<td>0.9</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>%V</td>
<td>-</td>
<td>0.06</td>
<td>1.6</td>
<td>1</td>
<td>3.3</td>
<td>3.9</td>
<td>15</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Progeny Analyses of Selected Breeders and Non-Selected Colonies

• Grooming Assays
• Hygienic Behaviour (VSH phenotypes)
• Morphometric Analyses
• Molecular Marker Analyses
• Selecting for variability in virus susceptibility
The Importance of Apiculture, ABIC 2010

Grooming Assay

SAT - 84

SAT - 65
Winter Varroa Reproduction in Saskatraz Breeding Lines

Colony ID - m denotes mean

% Varroa Mites on Adult Bees

- 04-Nov-08
- 09-Apr-09
Hygienic Behaviour Analyses

Varroa Mite
A three dimensional plot showing the grouping of 5 different honeybee populations using 20 informative microsatellite markers.
Selecting for Variability in Virus Susceptibility of Saskatraz Breeding Lines
Values plotted are mean, error bars are SE.

(Red bars indicate colonies showing virus infections)
Screening of Pre-Emergent Pupae From Varroa Tolerant and Sensitive Saskatraz Breeding Lines for IAPV using RT-PCR
Summary

- Natural Selection coupled with effective breeding procedures show promise in improving the productivity, health and sustainability of the domesticated honey bee.
- Positive selection pressure without the use of synthetic chemical miticides, should allow natural genetic processes to improve tolerance to mites and other pathogens (viruses, bacteria, fungi).
- Apiculture practices should focus more on genetics, breeding and biotechnology to help obtain sustainability of honey bee populations.
Acknowledgements

• Saskatchewan Agriculture (ADF), Agriculture Council of Saskatchewan (MB, AB, BC and Yukon), Meadow Ridge Ent. Ltd., SBA and CBRF
• GenServe Labs (Dr. G. Brown, Bruce Mann, Dr. Yves Plante, Dale Kelly, and Dr. Steven Creighton, SRC)
• VIDO (Dr. Philip Griebel and Wayne Connor)
• University of Saskatchewan Food and Bioproducts (Dr. Xiao Qiu and San Jei)
• Mohommad Mostejeran (Research associate 2008-present)
• Dr. Filipe Brizuela (Research associate summer 2008-09)
• Saskatchewan Bee Keeper Colony Donators & Contributors
• Dr. Abdullah Ibrahim (Research associate, summer 2007)
• John Pedersen – breeder stock multiplication and selection (2006)
• Eric Pedersen, Lyse Boisvert, Matthew Polinsky and Vika Cummins – summer student (2005-2008)
• Family members & Meadow Ridge staff: Tom, Jenny, and Cecilia Robertson, Neil Morrison, Rob Peace.
• Collaborators: John Gruszka (P.A.Sask) Dr. Solignac (Paris, France), Dr. Ralph Buchler (Germany), Dr. Rob Currie (U of M), and Manitoba Queen Breeders Association, Dr. S. Pernal (ACC, AB), Drs. T. Rinderer, & R. Danka (Baton Rouge, LA), S. Cobey (Davis, CA), BC Queen Breeders Association (T&E Huxter), Geoff Wilson (P.A. Sask).